Source code for ares.attack.vmi_fgsm

import torch
import numpy as np
from torchvision.transforms.functional import normalize
from ares.utils.loss import loss_adv
from ares.utils.registry import registry

[docs]@registry.register_attack('vmi_fgsm') class VMI_fgsm(object): '''Enhancing the Transferability of Adversarial Attacks through Variance Tuning. Example: >>> from ares.utils.registry import registry >>> attacker_cls = registry.get_attack('vmi_fgsm') >>> attacker = attacker_cls(model) >>> adv_images = attacker(images, labels, target_labels) - Supported distance metric: 1, 2, np.inf. - References: https://arxiv.org/abs/2103.15571. '''
[docs] def __init__(self, model, device='cuda', norm=np.inf, eps=4/255, stepsize=1/255, steps=20, decay_factor=1.0, beta=1.5, sample_number=10, loss='ce', target=False): '''The initialize function for VMI_FGSM. Args: model (torch.nn.Module): The target model to be attacked. device (torch.device): The device to perform autoattack. Defaults to 'cuda'. norm (float): The norm of distance calculation for adversarial constraint. Defaults to np.inf. eps (float): The maximum perturbation range epsilon. stepsize (float): The attack range for each step. steps (int): The number of attack iteration. decay_factor (float): The decay factor. beta (float): The beta param. sample_number (int): The number of samples. loss (str): The loss function. target (bool): Conduct target/untarget attack. Defaults to False. ''' self.epsilon = eps self.p = norm self.beta = beta self.sample_number = sample_number self.net = model self.decay_factor = decay_factor self.stepsize = stepsize self.target = target self.steps = steps self.loss = loss self.device = device
def __call__(self, images=None, labels=None, target_labels=None): '''This function perform attack on target images with corresponding labels and target labels for target attack. Args: images (torch.Tensor): The images to be attacked. The images should be torch.Tensor with shape [N, C, H, W] and range [0, 1]. labels (torch.Tensor): The corresponding labels of the images. The labels should be torch.Tensor with shape [N, ] target_labels (torch.Tensor): The target labels for target attack. The labels should be torch.Tensor with shape [N, ] Returns: torch.Tensor: Adversarial images with value range [0,1]. ''' images, labels = images.to(self.device), labels.to(self.device) if target_labels is not None: target_labels = target_labels.to(self.device) batchsize = images.shape[0] advimage = images momentum = torch.zeros_like(images).detach() variance = torch.zeros_like(images).detach() # PGD to get adversarial example for i in range(self.steps): advimage = advimage.clone().detach().requires_grad_(True) # clone the advimage as the next iteration input netOut = self.net(advimage) loss = loss_adv(self.loss, netOut, labels, target_labels, self.target, self.device) gradpast = torch.autograd.grad(loss, [advimage])[0].detach() grad = momentum * self.decay_factor + (gradpast + variance) / torch.norm(gradpast + variance, p=1) #update variance sample = advimage.clone().detach() global_grad = torch.zeros_like(images).detach() for j in range(self.sample_number): sample = sample.detach() sample.requires_grad = True randn = (torch.rand_like(images) * 2 - 1) * self.beta * self.epsilon sample = sample + randn outputs_sample = self.net(sample) loss = loss_adv(self.loss, outputs_sample, labels, target_labels, self.target, self.device) global_grad += torch.autograd.grad(loss, sample, grad_outputs=None, only_inputs=True)[0] variance = global_grad / (self.sample_number * 1.0) - gradpast momentum = grad if self.p==np.inf: updates = grad.sign() else: normVal = torch.norm(grad.view(batchsize, -1), self.p, 1) updates = grad/normVal.view(batchsize, 1, 1, 1) updates = updates*self.stepsize advimage = advimage+updates # project the disturbed image to feasible set if needed delta = advimage-images if self.p==np.inf: delta = torch.clamp(delta, -self.epsilon, self.epsilon) else: normVal = torch.norm(delta.view(batchsize, -1), self.p, 1) mask = normVal<=self.epsilon scaling = self.epsilon/normVal scaling[mask] = 1 delta = delta*scaling.view(batchsize, 1, 1, 1) advimage = images+delta advimage = torch.clamp(advimage, 0, 1)#cifar10(-1,1) return advimage
[docs] def attack_detection_forward(self, batch_data, excluded_losses, scale_factor=255.0, object_vanish_only=False): """This function is used to attack object detection models. Args: batch_data (dict): {'inputs': torch.Tensor with shape [N,C,H,W] and value range [0, 1], 'data_samples': list of mmdet.structures.DetDataSample}. excluded_losses (list): List of losses not used to compute the attack loss. scale_factor (float): Factor used to scale adv images. object_vanish_only (bool): When True, just make objects vanish only. Returns: torch.Tensor: Adversarial images with value range [0,1]. """ images = batch_data['inputs'] batchsize = len(images) advimages = images momentum = torch.zeros_like(images).detach() variance = torch.zeros_like(images).detach() # PGD to get adversarial example for i in range(self.steps): # clone the advimages as the next iteration input advimages = advimages.clone().detach().requires_grad_(True) # normalize adversarial images for detector inputs normed_advimages = normalize(advimages * scale_factor, self.net.data_preprocessor.mean, self.net.data_preprocessor.std) losses = self.net.loss(normed_advimages, batch_data['data_samples']) loss = [] for key in losses.keys(): if isinstance(losses[key], list): losses[key] = torch.stack(losses[key]).mean() kept = True for excluded_loss in excluded_losses: if excluded_loss in key: kept = False continue if kept and 'loss' in key: loss.append(losses[key].mean().unsqueeze(0)) if object_vanish_only: loss = - torch.stack(loss).mean() else: loss = torch.stack((loss)).mean() advimages.grad = None loss.backward() gradpast = advimages.grad.detach() grad = momentum * self.decay_factor + (gradpast + variance) / torch.norm(gradpast + variance, p=1) # update variance samples = advimages.clone().detach() global_grad = torch.zeros_like(images).detach() for j in range(self.sample_number): samples = samples.detach() samples.requires_grad = True randn = (torch.rand_like(images) * 2 - 1) * self.beta * self.epsilon samples = samples + randn # normalize adversarial images for detector inputs normed_samples = normalize(samples * scale_factor, self.net.data_preprocessor.mean, self.net.data_preprocessor.std) losses = self.net.loss(normed_samples, batch_data['data_samples']) loss = [] for key in losses.keys(): if isinstance(losses[key], list): losses[key] = torch.stack(losses[key]).mean() kept = True for excluded_loss in excluded_losses: if excluded_loss in key: kept = False continue if kept and 'loss' in key: loss.append(losses[key].mean().unsqueeze(0)) if object_vanish_only: loss = - torch.stack(loss).mean() else: loss = torch.stack((loss)).mean() global_grad += torch.autograd.grad(loss, samples, grad_outputs=None, only_inputs=True)[0] variance = global_grad / (self.sample_number * 1.0) - gradpast momentum = grad if self.p == np.inf: updates = grad.sign() else: normVal = torch.norm(grad.view(batchsize, -1), self.p, 1) updates = grad / normVal.view(batchsize, 1, 1, 1) updates = updates * self.stepsize advimages = advimages + updates # project the disturbed image to feasible set if needed delta = advimages - images if self.p == np.inf: delta = torch.clamp(delta, -self.epsilon, self.epsilon) else: normVal = torch.norm(delta.view(batchsize, -1), self.p, 1) mask = normVal <= self.epsilon scaling = self.epsilon / normVal scaling[mask] = 1 delta = delta * scaling.view(batchsize, 1, 1, 1) advimages = images + delta advimages = torch.clamp(advimages, 0, 1) return advimages